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SUBGRID MODELING OF FILTRATION IN POROUS SELF-SIMILAR MEDIA

UDC 532.536G. A. Kuz’min1 and O. N. Soboleva2

Subgrid modeling of a filtration flow of a fluid in an inhomogeneous porous medium is considered.
An expression for the effective permeability coefficient for the large-scale component of the flow is
derived using the scale-invariance hypothesis. The model obtained is verified by numerical simulation
of the complete problem.

Introduction. The inhomogeneity of a porous medium has a significant effect on filtration processes.
Natural porous media are essentially inhomogeneous, which can be taken into account as follows [1, 2]. Large-scale
(coarse) elements of the medium structure, for instance, large zones into which the medium can be divided and
easily distinguished layers or interlayers are directly described by the model. Small-scale details of permeability and
porosity distributions are unknown. They should be taken into account within the statistical approach, introducing
effective parameters, such as porosity, permeability, etc.

Theoretical determination of effective parameters requires solving of the corresponding problems in media
with random fields. In the present work, the effective parameters are determined using an refined Kolmogorov’s
scale-invariance hypothesis for three-dimensional media.

The ideas of scale invariance were used by Kolmogorov [3] to describe the scheme of a random process
of successive fragmentation of particles (gold particles in auriferous gravels, rock particles, etc.). To take into
account the intermittency of an inhomogeneous medium, one can use the ideas proposed by Kolmogorov in his
paper on the local structure of turbulence of a viscous incompressible fluid at very high Reynolds numbers [4]. In
this approach, the basic properties of the media are self-similarity, hierarchical spatial structurization, and power
dependences. For porous sedimentary rocks, power dependences were found, and correlation functions of density
and other parameters of the medium were measured [2]. The use of scale-invariance hypotheses similar to those
proposed by Kolmogorov [4] allows one to obtain dependences close to experimental ones.

Kolmogorov’s infinite multiplicative cascades [5] yield rather inhomogeneous “holed” (Cantor, fractal)
sets [6], which are widely used in geophysical problems. Application of methods of the fractal theory requires
the use of a geometric language, which is not sufficiently well mastered by many specialists working with porous
inhomogeneous media. Meanwhile, the main ideas used in the present work are close to those in [4]. Another
advantage of the approach used is the fact that the main parameters and functions of the theory of inhomogeneous
media are close to those obtained in experiments.

1. Scale Invariance of a Porous Medium. A porous medium is described by a set of fields (porosity,
permeability, coefficients in Hooke’s law, etc.), which may depend on spatial coordinates and time. When these
fields are measured, they are inevitably smoothed in space and time. The dependence of parameters on time is
usually rather weak; therefore, spatial smoothing is most important. Let us consider the permeability field of the
medium, which determines the filtration velocity of the fluid in the presence of a pressure gradient.

Let an incompressible fluid flow through a porous medium with a permeability coefficient ε(x). At low
Reynolds numbers, the filtration velocity v and pressure p are related by the Darcy law v = ε(x)∇p. The condition
of incompressibility div v = 0 yields the equation
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∂

∂xj

(
ε(x)

∂

∂xj
p(x)

)
= 0. (1)

Let the field of permeability be known. This means that it is measured at each point x as the fluid is pumped
through a specimen of small size l0. A random function of spatial coordinates ε(x) is considered as the limit of
permeability ε(x, l0). As l0 → 0, we have ε(x, l0)→ ε(x). The dependence ε(x, l0) on the scale l0 can be considered
as a factor that allows development of new approaches to studying randomly inhomogeneous media rather than
the error of the measurement processes. To pass to a coarser grid l1, one can smooth the resultant field ε(x, l0)
using the scale l1 > l0. It is not clear, however, whether the field obtained is the true permeability that describes
filtration in the range of scales (l1, L), where L is the greatest scale. Generally speaking, this is not the case. To find
permeability on a coarser grid, one has to repeat the measurements, pumping the fluid through larger specimens
of size l1. This procedure is necessary, since the fluctuations of permeability within the scale interval (l0, l1) have
correlations with pressure fluctuations induced by them. They are found using Eq. (1). The search for the law of
transformation of effective permeability with changing grid size is facilitated in media possessing scale invariance.

Similar to [4, 5], we consider a dimensionless field ψ equal to the ratio of permeability smoothed using two
different scales l and l′:

ψ(x, l, l′) = ε(x, l′)/ε(x, l), l′ < l

[ε(x, l) is the permeability ε(x, l0) smoothed over the scale l]. In what follows, we understand smoothing over the
scale l as, for example, rejection of Fourier harmonics with wavenumbers k > l in the expansion of the function
examined. The hypothesis of statistical scale invariance is assumed to be valid for the relative fields ψ(x, l, l′).
According to this hypothesis, there is an interval of scales l0 < l < L, where the correlation functions of the fields
ψ(x, l, l′) of all orders are invariant to the scale transform

x→ Kx, l→ Kl, l′ → Kl′.

The corollaries of the scale-invariance hypothesis for the field ψ(x, l, l′) are complicated by a large number of
its arguments, but it is possible to find a simpler field that is uniquely related to ψ(x, l, l′) and possesses all its
properties.

By construction, the function ψ has the following property:

ψ(x, l, l′′) = ψ(x, l, l′)ψ(x, l′, l′′). (2)

For a scale l′′ close to l′, we expand the function ψ(x, l, l′′) into a series in l′′ at the point l′:

ψ(x, l, l′′) = ψ(x, l, l′) +
∂ψ(x, l, l′)

∂l′
(l′′ − l′) + . . . . (3)

Similarly, we expand the function ψ(x, l′, l′′) into a series at the point l′:

ψ(x, l′, l′′) = ψ(x, l′, l′) +
∂ψ(x, l′, l′′)

∂l′′

∣∣∣
l′′=l′

(l′′ − l′) + . . . = 1 +
∂ψ(x, l′, l′y)

l′∂y

∣∣∣
y=1

(l′′ − l′) + . . . . (4)

Here y = l′′/l′. Substituting expansions (3) and (4) into Eq. (2), we obtain the following equation for ψ(x, l, l′):

∂ψ(x, l, l′)
∂l′

=
1
l′
ψ(x, l, l′)ϕ(x, l′). (5)

Here ϕ(x, l′) = ∂ψ(x, l′, l′y)/l′∂y|y=1. Equation (5) yields the relation

ϕ(x, l) =
∂ ln ε(x, l)
∂ ln l

. (6)

We obtained the field ϕ(x, l), which determines the function ε(x, l0) but has the properties of simple scale
invariance. All essential information about the porous medium is contained in statistical properties of the field
ϕ(x, l). The medium is known if the statistical properties of the function ϕ(x, l) are defined. Scale-invariant
fluctuations of the field ϕ can be observed only in a certain finite region of scales l0 < l < L. The solution of Eq. (6)
has the form

ε(x, l0) = ε0 exp
(
−

L∫
l0

ϕ(x, l1)
dl1
l1

)
. (7)
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For certainty, we assume that there are no inhomogeneities whose scale is larger than L. The coefficient ε0 in Eq. (7)
is assumed to be constant. We consider the correlation function (central moment) ϕ(x, l):

Φ(x,y, l, l′) = 〈ϕ(x, l)ϕ(y, l′)〉c = 〈ϕ(x, l)ϕ(y, l′)〉 − 〈ϕ(x, l)〉〈ϕ(y, l′)〉.

Hereinafter, the central moments are marked by the subscript c after the closing broken bracket. We assume that
the medium is isotropic and statistically independent of the position of the origin of the coordinate system. Then,
the correlation function considered depend only on the following arguments:

Φ(x,y, l, l′) = Φ((x− y)2, l, l′).

For simplicity, we use the same notation Φ in the right side. The statistical scale invariance of the field ϕ means
that the following equality is valid for all positive K:

Φ((x− y)2, l, l′) = Φ(K2(x− y)2,Kl,Kl′).

Choosing K = 1/l, we obtain

Φ((x− y)2, l, l′) = Φ((x− y)2/l2, l′/l). (8)

It follows from this equation that the function Φ depends on two arguments only. If the field ϕ is not Gaussian,
correlations of all orders are essential. Relations similar to (8) can readily be derived for them. These relations are
not presented here, since the simplest scale-invariant model (logarithmically normal model) is used in numerical
simulation. Note, natural extension of scale invariance (conformal symmetry) was considered in [7]. Conformal
invariance allows one to limit the functional dependence of correlation functions of all orders more rigorously than
the use of one scale invariance.

2. Logarithmically Normal Model for Permeability. In this work, we assume that the random field ϕ
has the Gaussian distribution. In this case, the number of its independent correlation functions reduces to the first
two functions. In the theory of probability, random Gaussian quantities are considered as the simplest objects. The
permeability ε(x, l0) has a logarithmically normal distribution. Thus, the scale-invariant, logarithmically normal
model is the simplest model in the class of scale-symmetric models.

Note, the following equality should be satisfied in this logarithmically normal model:

〈ε(x, l0)〉 = ε0. (9)

For such fields as the porosity field, condition (9) follows from their physical essence. This condition is also valid
for the field of permeability, since smoothing over large volumes is equivalent to statistical averaging in accordance
with the ergodic hypothesis. Equality (9) shows that the constant ε0 is equal to permeability smoothed over a
large volume and differs from the effective permeability ε00 measured at the greatest scale, which is determined by
pumping the fluid through a very large specimen of scale L.

Using Eqs. (7) and (9), we obtain

〈
exp

(
−

L∫
l0

ϕ(x, l1)
dl1
l1

)〉
= 1. (10)

According to [5], the following formula is valid for an arbitrary nonrandom function θ(l) and Gaussian field f(l):

〈
exp

(
− i

L∫
l

θ(l1)f(l1) dl1
)〉

= exp
(
− i

L∫
l

θ(l1)〈f(l1)〉 dl1 −
1
2

L∫
l

dl1

L∫
l

dl1 θ(l1)θ(l2)〈f(l1)f(l2)〉c
)
. (11)

Choosing f(l) = ϕ(x, l) and θ(l) = −i/l, we obtain from Eqs. (10) and (11) the equation
L∫
l0

dl1
l1

L∫
l0

dl2
l2
〈ϕ(x, l1)ϕ(x, l2)〉c − 2

L∫
l0

〈ϕ(x, l1)〉 dl1
l1

= 0, (12)

where 〈ϕ〉 is a constant, which follows from the homogeneity and scale invariance of ϕ(x, l). In a particular case
of noncorrelated fluctuations of the field ϕ of different scales, the model is simplified. We choose the correlation
function in the form

Φ((x− y)2/l2, l′/l) = Φ0 exp(−(x− y)2/l2)δ(ln l − ln l′). (13)
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Then for x = y, Eq. (12) yields

Φ0 = 2〈ϕ〉. (14)

Formula (10) is valid for arbitrary limits of integration, since the exponent in (12) vanishes if Eq. (14) is satisfied.
We consider the correlation function ε at the points x and x+ r. It follows from (7) that

〈ε(x, l0)ε(x+ r, l0)〉 =
〈
ε2

0 exp
[
−
( L∫
l0

(ϕ(x, l1) + ϕ(x+ r, l1))
dl1
l1

)]〉
.

Choosing f(l) = ϕ(x, l) + ϕ(x+ r, l) and θ(l) = −i/l in Eq. (11), we obtain

〈ε(x, l0)ε(x+ r, l0)〉 = ε2
0 exp

(
− 2〈ϕ〉 ln L

l0
+

L∫
l0

dl1
l1

L∫
l0

dl2
l2
〈ϕ(x, l1)ϕ(x+ r, l2)〉c

)

= ε2
0 exp

(
− 2〈ϕ〉 ln L

l0
+

L∫
l0

dl1
l1

L∫
l0

Φ
(r2

l21
,
l1
l2

)dl2
l2

)
. (15)

Using (15), we estimate the correlation function ε from (13) for r < L, which is analogous to the formula for
the correlation function of the energy-dissipation rate [5]

〈ε(x, l0)ε(x+ r, l0)〉 ≈ C(r/L)−Φ0 . (16)

The constant in (16) is defined by the expression C = ε2
0(L/l0)−2〈ϕ〉 e−Φ0γ , where γ = 0.57722 is the Euler constant

and l0 is the minimum scale. For r � L, we have 〈ε(x, l0)ε(x + r, l0)〉 → ε2
0. This case is not interesting and is

not further considered. In the case of conformal symmetry, similar estimates were obtained in [7] without using the
assumption of the absence of correlation in terms of ln l.

The constant C in Eq. (16) is not universal, since it is determined by an integral that extends outside the
limits of the interval of scale invariance, whereas the exponent Φ0 = 2〈ϕ〉 is universal, since it is proportional to the
mean of the universal field ϕ. For sedimentary rocks, the value of the correlation function of density of sandstone
is 2〈ϕ〉 ≈ 0.3 [2]. In theoretical studies, one may avoid using correlation functions with a delta-shaped dependence
in terms of scale. This is not important, but the use of correlation functions significantly simplifies numerical
simulation of such a field. Results of numerical experiments may be useful in solving problems for a wider range of
real media.

3. Subgrid Model. We assume that the permeability ε varies within a wide range of scales; therefore, direct
calculation of the pressure field from the equation is impossible or requires large computational resources. In the
present paper, we show that Eq. (1) can be simplified to describe correctly the large-scale component of pressure
only and contain no information about small-scale fluctuations by using a universal formula, if the small-scale
component contains only the scale-invariant part of permeability fluctuations.

We represent the function of permeability ε(x, l0) as a sum of two components. The large-scale component is
obtained by smoothing ε(x, l0), and the small-scale (subgrid) component is the difference ε′ = ε(x, l0)−εl. By virtue
of Eq. (10), which is valid for arbitrary limits of integration in the model considered, the large-scale permeability
εl is also obtained by statistical averaging of ε over small-scale fluctuations. The statistical distribution for p is
determined by Eq. (1) if the distribution for ε is known. We determine the large-scale (ongrid) component of
pressure as a conventional mean pl(x) = 〈p(x)〉l. We consider the statistical mean of p(x) — solutions of Eq. (1)
in which the permeability coefficient has a fixed large-scale part εl but an arbitrary small-scale component ε′. The
subgrid component of pressure p′ = p− pl is of no interest, but it cannot be neglected in the filtration equation

∂

∂xj

(
εl(x)

∂

∂xj
pl(x) +

〈
ε′(x)

∂

∂xj
p′(x)

〉
l

)
= 0, (17)

since the second expression in this equation may be significant. The form of this term is further determined from
the subgrid model.

Using the hypothesis of scale invariance for the medium, we obtain an approximate gradient model for the
subgrid term. We use the Landau–Lifshits approach [8] where the effective dielectric permeability of the mixture
was calculated under simplifying assumptions on the smallness of fluctuations and their spatial scale [8, Sec. 9].
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The equations, simplifying assumptions, and model obtained in the present work are similar to those in [8]. In
deriving the subgrid formula, it is assumed that subgrid fluctuations are small in amplitude and have a small spatial
scale. Numerical verification revealed good agreement with model calculations, and we give some assumptions on
the reasons for this correspondence and the form of the effective parameter of expansion in a more complete theory
at the end of this Section.

We estimate the second term in (17). Subtracting Eq. (17) from Eq. (1), we obtain the equation for the
subgrid component of pressure:

∂

∂xj

(
ε′(x)

∂

∂xj
pl(x) + ε(x, l)

∂

∂xj
p′(x) + ε′(x)

∂

∂xj
p′(x)−

〈
ε′(x)

∂

∂xj
p′(x)

〉
l

)
= 0. (18)

The method for obtaining the subgrid model is similar to that used in the method of the renormalization
group [9]. The subgrid equation is solved using the theory of perturbations, and the resultant solution is substituted
into the ongrid equation. This procedure is repeated many times for larger separating scales. As a result, equations
for transformation of parameters of the subgrid model with variation of the separating scale are obtained. The
model similar to that obtained in [8] yields the law of transformation of parameters with a small variation of the
separating scale.

Retaining terms of the first order with respect to ε′ and p′ in Eq. (18), we obtain

∂

∂xj

(
ε′(x)

∂

∂xj
pl(x) + ε(x, l)

∂

∂xj
p′(x)

)
= 0.

Assuming that ε(x, l) and ∂pl(x)/∂xj change slowly as compared to ε′ and p′, we can write

∆p′(x) = −ε(x, l)−1∇ε′(x)∇pl(x).

The solution of this equation can be represented as

p′(x) = −
∫
G(x− x′) ∇ε

′(x′)∇pl(x′)
ε(x′, l)

dx′, (19)

where G(x− x′) is the Green function. Using the expression obtained for the component of subgrid pressure (19),
we estimate the second term in Eq. (17):

−
〈
ε′(x)

∂

∂xj

∫
G(x− x′) 1

ε(x′, l)
∂

∂x′i
ε′(x′)

∂

∂x′i
pl(x′) dx′

〉
l

=
〈
ε′(x)

∫
∂

∂x′j
G(x− x′) 1

ε(x′, l)
∂

∂x′i
ε′(x′)

∂

∂x′i
pl(x′) dx′

〉
l

=
∫ 〈

ε′(x)
∂

∂x′j
G(x− x′) 1

ε(x′, l)
∂

∂x′i
ε′(x′)

∂

∂x′i
pl(x′)

〉
l
dx′.

Since ε(x, l) and ∂pl(x)/∂xj change slowly as compared to ε′ and p′, we can use the theorem of the mean to obtain∫ 〈
ε′(x)

∂

∂x′j
G(x− x′) ∂

∂x′i
ε′(x′)

〉
l
dx′

1
ε(x, l)

∂

∂xi
pl(x)

≈ −
∫
G(x− x′) ∂

∂x′j

∂

∂x′i
〈ε′(x)ε′(x′)〉l dx′

1
ε(x, l)

∂

∂xi
pl(x).

The correlation function 〈ε′(x)ε′(x′)〉 = f((x−x′)2) is invariant with respect to the origin and isotropic; therefore,
we have (∂/∂x′j)(∂f/∂x

′
i) = δij ∆f/D, where D is the dimensionality of the space

−
∫
δ(x− x′) δij

D
〈ε′(x)ε′(x′)〉l dx′

1
ε(x, l)

∂

∂xi
pl(x) = − 1

D
〈ε′(x)ε′(x)〉l

1
ε(x, l)

∂

∂xj
pl(x).

We assume that the dependence ε(x) contains all scales in the interval (l − δl, L) and is constructed in
accordance with formula (7). In this case, ε′(x) can be determined as follows:

ε′(x) = ε(x, l − δl)− ε(x, l) = ε0

[
exp

(
−

L∫
l−δl

ϕ(x, l1)
dl1
l1

)
− exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

)]
.
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Neglecting second-order terms, we obtain

ε′(x) ' −ε(x, l)
l∫

l−δl

ϕ(x, l1)
dl1
l1
.

Then, we have

〈ε′(x)ε′(x)〉lc = ε(x, l)2

l∫
l−δl

l∫
l−δl

〈ϕ(x, l1)ϕ(x, l2)〉lc
dl1
l1

dl2
l2
.

The central and initial moments for ε′(x) coincide, since 〈ε′(x)〉 = 0. For the correlation function (13), the delta-
correlation in terms of the scale logarithm yield the equality

〈ϕ(x, l1)ϕ(x, l2)〉lc = 〈ϕ(x, l1)ϕ(x, l2)〉c.

Substituting this solution into the equation of filtration and using formula (13) for the Gaussian field ϕ, we obtain
the following expression for the subgrid term in (17):

−(Φ0δl/(lD))∇[ε(x, l)∇pl(x)]. (20)

This formula is similar to the expression for dielectric permeability of the mixture obtained in [8]. Substituting (20)
into (17), we obtain the expression for effective permeability arising in the ongrid equation

ε(x, l) = ε0l exp
(
−

L∫
l

ϕ(x, l1)
dl1
l1

)
=
ε0l

ε0
εl(x, l), (21)

where ε0l depends on the scale only and satisfies the differential equation

d ln ε0l

d ln l
= −Φ0

D
.

The solution of this equation shows that the constant in ε0l has a power dependence on the subgrid scale:

ε0l = ε00(l/L)−Φ0/D. (22)

Thus, ongrid pressure is described by the equation

ε0l

ε0

∂

∂xj

(
ε(x, l)

∂

∂xj
pl(x)

)
= 0. (23)

In Eq. (23), the influence of the subgrid term is taken into account by a coefficient ε0l/ε0 constant in space. This
influence is significant in the expression for filtration velocity and also if Eq. (1) contains a term with a derivative
in time. If a coarse grid is used to simulate a flow through a fractal medium, effective permeability should be
multiplied by a constant factor in accordance with Eq. (22).

Formula (22) contains two constants: ε00 and ε0l. The mean flow velocity in a porous medium is 〈v〉 =
ε00∇〈p〉. The constant ε0l is used in the subgrid model. The constants ε00 and ε0l are different; hence, subgrid
fluctuations of pressure are significant. The difference between the constants ε00 and ε0 should also be taken
into account. The constant ε0 is obtained by averaging Eq. (7) over fluctuations of all scales. The constant ε00

characterizes the relationship between the mean velocity and mean pressure gradient.
The power exponent in formula (22) is small for high values of D. This allows us to assume that the

parameter Φ0/D can be used as a small parameter in the theory of perturbations. Formula (20) yield a gradient
model. The exact expression for subgrid terms should contain some nonlocal integral expressions. To refine the
model, one has to take into account the next terms of expansion in Eq. (17). Formula (22) is verified by numerical
simulation in Sec. 4.

4. Numerical Simulation. We solve the problem of filtration in an inhomogeneous porous medium in a
cube with a rib L0. A constant pressure is set at the faces y = 0 and y = L0: p(x, y, z)|y=0 = p1 and p(x, y, z)|y=L0 =
p2 (p1 > p2). The pressure at the other faces of the cube is set by the linear dependence in terms of y: p =
p1 +(p2−p1)y/L0. The main filtration flow is directed along the y axis. Fluctuations of porosity induce fluctuations
of the magnitude and direction of filtration velocity.
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For numerical calculation of the flow, we pass to dimensionless variables in Eq. (1). All lengths are measured
in units of L0, and the unit of pressure difference is p1 − p2. Permeability is measured in units of ε0. Thus, it is
sufficient to solve the problem for ε0 = 1 in a unit cube with a unit pressure difference.

First, we calculate the field of permeability. The integral in Eq. (7) is replaced by a finite-difference formula
in which it is convenient to pass to logarithms with the base 2:

εl(x) = exp
(
− 1

log2 e

log2 L0∫
log2 l

ϕ(x, τ) dτ
)

= 2
−

0∫
log2 l

ϕ(x,τ) dτ

≈ 2
−

0∑
i=−8

ϕ(x,τi)δτ

. (24)

Here li = 2τi and δτ is the step of discretization in terms of the scale logarithm. We use a 256 × 256 × 256 grid
with respect to spatial variables; δτ = 1 and τi = 0,−2,−3, . . . , log2 (1/256) = −8. To calculate ϕ, we use the
correlation function (13) to obtain

〈ϕ(x, li)ϕ(y, lj)〉c = (Φ0/ln 2) exp(−(x− y)2/22τi)δij ,

where the constant Φ0 = 2〈ϕ〉 should be chosen from experimental data for natural porous media. According to [2],
Φ0 ≈ 0.3. The functions on the grid are matrices. The structure of the correlation matrix allows us to represent it
in the form of a direct product of four matrices of lower dimensionality and apply the algorithm “along rows and
columns” for numerical simulation [10]. The delta-correlation in the scale logarithm means that the field ϕ(x, li) is
generated independently on each scale li. The total power exponent in (24) is summed over statistically independent
layers.

In the present calculations, two upper and three lower layers are left empty, i.e., the field ϕ in these layers is
equal to zero. Two empty upper layers indicate that the scale of the largest fluctuations of permeability is L = 1/8.
This allows us to replace the approximate-probable mean quantities by space-averaged values. Three lower layers
are also left empty, which is conditioned by the requirement that the difference problem considered should provide
a good approximation of Eq. (1) at all scales.

In particular problems, the scales L and l0 can take different values. They are not specified in the present
work, since the objective is to find a universal subgrid model and its universal power exponents [such as Φ0/D in
Eq. (22)]. For an approximate calculation, a certain limited number of layers can be used. In our case, there are four
layers. Figure 1 shows the change in permeability with increasing contribution of smaller and smaller fluctuations.
The corresponding field of permeability for different scales in the mid-section z = 1/2 is given. In accordance with
the procedure of deriving the subgrid formula, we have to solve numerically the complete problem and perform
probability averaging over small-scale fluctuations to verify the formula. As a result, we obtain a subgrid term,
which can be compared with the theoretical expression. Probability averaging requires multiple solution of the
complete problem with a prescribed large-scale component of permeability but a random subgrid component with
subsequent averaging with respect to the latter. In the present work, we performed a more economic variant of
verification based on the power dependence of the total flow rate on the ratio of the maximum and minimum scales
in the ongrid region in calculating permeability by Eq. (7) if the contribution of the subgrid region is ignored. To
demonstrate this, we perform the following transformations of the formulas obtained. Effective permeability (21)
should yield the true velocity in the region (L, l). In particular, the total flow rate of the fluid through the specimen
should coincide with the true value regardless of the scale of truncation l.

For the mean flow rate of the fluid through a cross section, we have

−
〈
ε0l exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

)
∇p
〉

= Q = const.

The right side of this equality is independent of l. Taking into account Eq. (22), we obtain

ε0l

〈
exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

)
∇p
〉

= ε00

( l
L

)−Φ0/D〈
exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

)
∇p
〉

= −Q.

Hence, we have 〈
exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

)
∇p
〉

= − Q

ε00

( l
L

)Φ0/D

.
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Fig. 1. Variation of permeability for z = 1/2 and ε−3(x) = 2
−
−2∑
i=−3

ϕ(x,τi)

(a), ε−4(x) = 2
−
−2∑
i=−4

ϕ(x,τi)

(b),

and ε−6(x) = 2
−
−2∑
i=−6

ϕ(x,τi)

(c).

Fig. 2. Velocity isolines in the cross section z = 1/2.

In accordance with the Darcy law written at the scale L0 � L, the total flow rate is

Q = ε00(p1 − p2)/(y2 − y1).

In the present calculations, we assume that the scale L0 is rather large as compared to L, and the probable mean
can be replaced by space averaging (ergodic hypothesis). Thus, we have to verify numerically the formula

〈
exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

)
∇p
〉

=
p2 − p1

y2 − y1

( l
L

)Φ0/D

,

where the mean is understood as the space-averaged.
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Fig. 3 Fig. 4

Fig. 3. Dependence Ω(τ) for p1 − p2 = 1 and y2 − y1 = 1.

Fig. 4. Dependence Θ(τ).

Then, the grid analog of the dimensionless equation (1) is solved numerically. An iterative method combined
with the fast Fourier transform and second-order sweep method is used [11]. Figure 2 shows the velocity isolines
for the case where the layers numbered (−6)–(−3) over the scale are filled. Then we obtain the left side of Eq. (4)
using the numerical solution of Eq. (1), where fluctuations of the smallest scale are ε−3, . . . , ε−6. It was found
theoretically that the plot should have the form of a straight line (since a power dependence was obtained) with a
slope Φ0/D = 0.1 to the abscissa axis. The result of numerical verification is plotted in Fig. 3, where

Ω = log2

〈
exp

(
−

L∫
l

ϕ(x, l1)
dl1
l1

) ∇p
p2 − p1

〉

is the flow rate of the fluid. The theoretical results are in rather good agreement with numerical data. Figure 4
shows the dependence of Θ = log2 [〈(∇p)2〉/(p2 − p1)2] on τ . Obviously, this is also a power dependence, which
testifies to scale invariance of the pressure-gradient field.

5. Discussion of Calculation Results. An analysis of the plots of permeability and filtration velocity
shows that they are close to the results of numerical experiments with the use of the multifractal technique. Within
the approach used in the present work, multifractals are obtained if the minimum scale l0 tends to zero. In this
case, rather irregular fields are obtained, which differ from zero on the Cantor-type set (see Fig. 1). One has to
use the language of geometry to describe these fields. The numerical experiment on the Cantor sets is performed
using the methodology of the percolation theory. A geometric set of the carpet type with bonds of different scales
is usually constructed (for example, the Serpinskii carpet). These bonds can serve to transport a fluid, heat, an
admixture, etc. In solving probability problems on fractals, singular distributions of probability are obtained, and
then envelopes are constructed (see, e.g., [12]) for which differential equations are derived. In the present work,
the minimum scale remains finite; therefore, there are no singularities. The Cantor sets do not emerge, and the
entire analysis is within the limits of the apparatus of differential equations and the theory of random processes.
The special feature of the problem is the use of the scale-invariance hypothesis. The main objects of the theory are
fields whose properties can be measured directly (at least, in principle).

The simplest model considered within the framework of the present approach is the scale-invariant, logarith-
mically normal model of the carrier medium. The logarithmically normal model was criticized for several reasons.
For example, the logarithmically normal distribution does not satisfy the conditions of the Carlemann theory and,
hence, it is not determined by its moments. It is argued in some papers that the use of the logarithmically normal
model does not involve these difficulties [13]. The method used in the present work is applicable for a wider class of
models that the logarithmically normal model. It is assumed that the power dependences obtained are also typical
of more generic cases.

The authors are grateful to V. A. Ogorodnikov for consultations in numerical implementation of uniform
isotropic random Gaussian fields.
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